Implementacao
do gerador de
codigo

public class Instruction {

public byte op; // op-code (0 .. 15)
public byte r; // register field (0 .. 15)
public byte n; // length field (0 .. 255)
public short d; // operand field (-32767 .. +32767)
public static final byte // op-codes(Table C.2)
LOADop = 0, LoabAop = 1,
LoaDIop = 2, LOADLop = 3,
STOREocp = 4, STOREIop = 5,
CALLop =anb;w CALLTOop = »iily
RETURNop = 8,
PUSHop = 10, POPop =111
JUMPop = 12, JUMPIop = 13,
JUMPIFop = 14, HALTop = 15;
public static final byt // register numbers (Table C.1)
EBr =0y SN T Essine] sl PRY-te=i/ 2 Pt =" 23)
SBE = 4y cSTysis che o CHBy = 6 CHIER = T
J) 5 % S s pyytmm L B it el 1 L2y =10 T3 pa=nlra
LAy =42 NESY =13 p n T.6r =il d "CPri= 185>

public Tnstruction (byte op, byte r, byte n,
short d)
{liends]

private Instruction|(] code = new Instruction[1024];
private short nextInstrAddr = 0; // address of next instruction
// to be stored in code

private void emit (byte op, byte n, byte r, short d) {
// Append an instruction with fields op, n, r, d to the object program.
code [nextInstrAddr++] =
new Instruction(op, n, r, d4d);

Phrase class

Visitor/fencoding method

Behavior of visitor/fencoding method

Program visitProgram Generate code as specified by ‘run P’.
Command visit...Command Generate code as specified by ‘execute C'.
Expression visit...Expression Generate code as specified by ‘evaluate E’.
V-name visit...Vname Return an entity description for the given value-
or-variable-name (explained in Section 7.3.)
Declaration visit...Declaration | Generate code as specified by ‘elaborate D).

Type-denoter

visit...TypeDenoter

Return the size of the given type.

public Object visitProgram (Program prog, Object

// Generate code as specified by ‘run prog’.

public Object visit...Command
{...Command com, Object arg);
// Generate code as specified by ‘execute com’.

public Object wvisit...Expression
(...Expression expr, Object arg);
// Generate code as specified by ‘evaluate expr’.

public Object wvisit...Declaration

{...Declaration decl, Object arg):

// Generate code as specified by ‘elaborate decl’.

arg) ;

private void encodeFetch (Vname wvname) ;
// Generate code as specified by ‘fetch vname’.

private void encodeAssign (Vname vname) ;
¢/ Generate code as specified by ‘assign vname’.

public Object visitProgram run [C] =
(Program prog,
Object arg) {
prog.C.visit (this, arg); execute C
emit (Instruction.HALTop, 0, 0, 0); HALT

public Object vigitAssignCommand
(AssignCommand com,
Object arg) {
com.E.visit (this, arg);
encodeAssign (com.V) ;
return null;

}

public Object visitCallCommand
(CallCommand com,
Object arg) {
com.E.visit (this, arg) ;
short p = address of primitive routine
named com. I;
emit (Instruction.CALLoOp,
Instruction.SBr,
Instruction.PBr, p);
return null;

execute [V := EJ] =

evaluate E
assign 'V

execute|[1 (E) || =

evaluate E

CALL p

public Object visitSeguentialCommand
(SequentialCommand com,
Object arg) {
com.Cl.visit (this, arg);
com.C2.visit (this, arg);
return null;

}

public Object visitLetCommand
(LetCommand com,
Object arg) {
com.D.visit (this, arg);
com.C.visit (this, arg);
short s = amount of storage allocated by D;
i€ (s > 0)

emit (Instruction.POPop, 0, 0, s);

return null;

execute [Cy ; Cs] =

execute Cy
execute Co

execute [let D
inC] =

elaborate D

execute C

ifs>0
POP(0) s

public Object visitIntegerExpression evaluate [[IL] =
(IntegerExpression expr,
Object arg) {
short v = valuation(expr.IL.spelling);
emit (Instruction.LOADLop, 0, 0, v); LOADL v
return null;

}

public Object visitVnameExpression evaluate [V] =
(VnameExpression expr,
Object arg) {
encodeFetch (expr.V) ; Jetch V
return null;

public Object visitUnarvExpression
(UnaryExpression expr,
Object arg) {
expr.E.vigit (this, arg);
short p = address of primitive routine
named expr.Q;
emit (Instruction.CALLop,
Instruction. SBr,
Instruction.PBr, p);
return null;
}

public Object visitBinaryExpression

(BinarvExpression expr,

Object arg) ({
expr.El.visit(this, arg);
expr.E2.visit(this, arg);
short p = address of primitive routine

named expr.O;
emit{Instruction.CALLop,
Instruction.SBr,
Instruction.PBr, p);
return null;

evaluare O E] =

evaluate E

CALL p

evaluate [E| O
Er] =

evaluate E,
evaluare E

CALL p

public final class Encoder implements Visitor {

// Auxiliary methods, as above.
// Visitor/encoding methods, as above.

public void encode (Program prog) |
prog.visit (this, null);
}

For instance, in Example 7.3 we saw the translation of ‘while i » 0 do i :=
2", Here we show in detail how visitWhileCommand generates this object code:

1 -

(1)

It saves the next instruction address (say 30) in j.

(2) It generates a JUMP instruction with a zero address field:
0. JUuMP O
(3) Itsaves the next instruction address (namely 31) in g.
(4) It translates the subcommand ‘i := i - 2’ to object code:
31: LOAD i
32: LOADL 2
33: CALL sub
34: STORE 1
(5) It takes the next instruction address (namely 35), and patches it into the address
field of the instruction whose address was saved in § (namely 30):
J0: JUMP 35
(6) It translates the expression ‘i > 07 to object code:
35: LOAD 1
36: LOADL 0O
37: CALL gt
(7) It gencrates a JUMPIF instruction whose address field contains the address that

was saved in g (namely 31):

38 JUMPIF(l) 31

public Object wvisitWhileCommand (execute l[while £

(WhileCommand com, do C] =
Object arg) {
short] = nextInstraddr; J:
emit (Instruction.JUMPop, 0, JUMP h
Instruction.CBr, 0);
short g = nextInstrAddr; g:
com.C.visit (this, arg); execute C
short h = nextInstrAddr; h:
patch(j, h);
com.E.visit(this, arg); evaluate I
emit (Instruction.JUMPIFop, 1, JUMPIF (1) g

Instruction.CBr, g);
return null:;

public¢ Object wvisitIfCommand execute |[1f£ E

(IfCommand com, then C,
Object arg) | else (] =
com.E.visit (this, arg): evaluate E
short i = nextInstrAddr; i
emit (Instruction.JUMPIFop, 0O, JUMPIF(0) g
ITnstruction.CBr, 0):
com.Cl.visit (this, arg); execitte Cy
short j = nextInstriddr; j:
emit (Instruction.JUMPop, 0, JUMP h
Instruction.CBr, 0):
short g = nextInstrAddr; g:
patch(i, gqg);
com.C2.visit (this, arg); execute Co
ghort h = nextInstraddr; he

patch(j, nextInstrAddr);
return null;

private void patch (short addr, short d) ({
// Store d in the operand field of the instruction at address addr.
code[addr].d = d;

Observacoes

* No projeto, nao iremos fazer backpatching;
* Refereciar os enderecos de memoria através de rdotulos simbdlicos;
* Desvio do fluxo de controle e chamada de procedimentos e fungdes.

(b) Decorated AST with Program
attached entity descriptions:

LetCommand
1
[il
SequentialDeclaration AssignCommand
1 1
[I
SimpleV. BinaryExpression
R et e =~
(H| # (2)| # - ‘\\ \ N |
ConstDeclaration VarDeclaration \ \ VnameExpr. VnameExpr.
’ ’ |

4% I 2 | \\\ \\ I \\ I

(Int.Expr. ¢ int \\ \\ SimpleV. Y SimpleV.
E | i NE RN N 6]
E Ident. Int.Lit : Ident. Ident. Ident. Op. Ident.
i i e i :
E b 10 : i i i * b
) Y
known value known address

size =1 address = 4
value = 10

Figure 7.1 Entity descriptions for a known value and a known address.

Program

LetCommand
1
|
LetCommand
1
2)|
ConstDeclaration - .
‘_J" | \\
rfr} l - \\\
! BinaryExpression "~
[] L
(1 i]
VarDeclaration <& -----F--==== = VnameExpr.
1
i;"r i S |
:; int : IntExpr. M SimpleV.
i :)
!I Ident. i Ident. IntLit. Op. Ident.
E be Y 365 + X
Y ¥y
known address unknown value
address = 5 size = 1
address = 6

b

CallCommand

]

N VnameExpr.

~
S

\\‘ |

\'\ \Simple"\f’,

'\\Q_Hl
I&cnt.

Ident.

pu tint y

Figure 7.2 Entity descriptions for a known address and an unknown value.

let < known routine

------------------------------- address = (0,1)

pr =

unknown address
address = (1,-2)

“=-~.a unknown value

var b: record ™=~ address = (1, -1)
o Integer: T meaes
%: Integer; """"" | Known address
d: Integer address = (0,0)
end
in

begin

DI 2= ane Key:

S(var b.m, 6):

b-dh routine level |
end routine level ()

Figure 7.6 Entity descriptions for constant and variable parameters.

In declarations, identifiers may be bound to entities such as values and addresses.
Each entity may be either known or unknown (at compile-time). All combinations are
possible, and all actually occur in some languages:

* Known value: This describes a value bound in a constant declaration whose right side
is a literal.

* Unknown value: This describes a value bound in a constant declaration whose right
side must be evaluated at run-time, or an argument value bound to a constant param-
eter.

» Known address: This describes an address allocated and bound in a variable declar-
ation.

* Unknown address: This describes an argument address bound to a variable
parameter.

We can systematically deal with both known and unknown entities by the techniques
illustrated in Examples 7.10 and 7.11. In general:

* If an identifier 7 is bound to a known entity, the code generator creates an entity
description containing that known entity, and attaches that entity description to the
declaration of 7. It translates each applied occurrence of / to that known entity.

» If an identifier / is bound to an unknown entity, the code generator generates code to
evaluate the unknown entity and store it at a known address, creates an entity descrip-
tion containing that known address, and attaches that entity description to the declar-
ation of /. At each applied occurrence of /, the code generator generates code to fetch
the unknown entity from the known address.

The auxiliary function display-register(cl, 1) selects the display register that will

enable code at routine level ¢l to address a variable declared at routine level [-

display-register(cl,[) = <

-

SB
LB
L1

L2

ifli=0
ifl>0andcl=1
ifi>0andcl=1+1
ifiI>0andcl=1+2

(7.20a)
(7.20b)
(7.20¢)
(7.20d)

fetch 1] =

(1)

(ii)

(11i)

if Iis bound to a known value:
LOADL v where v = value bound to [

if I is bound to an unknown value or known address:
LOAD (s) d[r] where s = size(type of [),
(I, d) = address bound to I,
¢l = current routine level,
r = display-register(cl, I)

if I is bound to an unknown address:

LOAD (1) dlr]

LOADT (s} where s = size(type of I),
({, d) = address bound to [,
¢l = current routine level,
r = display-register(cl, [)

(7.39)

assign [I] =
(1) 1f 7 1s bound to a known address:
STORE (s) dl[r] where s = size(type of D),
({, d) = address bound to /,
cl = current routine level,
r =display-register(cl, [)

(ii) if [is bound to an unknown address:
LOAD(Ll) dI[r]
STOREIL (s) where s = size(type of 1),
(I, d) = address bound to [,
cl = current routine level,
r = display-register(cl, [)

(7.40)

fetch-address [I] = (7.41)
(i) if fis bound to a known address:
LOADA d|[r] where ([, d) = address bound to [,
cl = current routine level,
r = display-register(cl, I)

(ii) if I'is bound to an unknown address:
LOAD(1) d[r] where ([, d) = address bound to [,
¢l = current routine level,
r=display-register(cl, I)

